
Report for Stable
Token Contracts

Date: April 30, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter 2 Findings 4
2.1 DeFi Security . 4

2.1.1 Potential DoS when the variable required equals to the number of owners 4
2.1.2 Potential DoS due to the unbounded array transactions 5
2.1.3 Improper handling of the variable transaction.executed 6

2.2 Recommendation . 7
2.2.1 Lack of zero address checks . 7
2.2.2 Add blacklist restrictions to approval operations 8
2.2.3 Add state change checks in the blacklist(), unBlacklist(), removeMinter(),

and configureMinter() functions . 9
2.2.4 Unify signature handling across the protocol for consistency 10

2.3 Note . 11
2.3.1 Potential centralization risks . 11
2.3.2 Potential front-running risks . 11
2.3.3 Correct value assignments for the variable required 12

Report Manifest

Item Description
Client Solidus
Target Stable Token Contracts

Version History

Version Date Description
1.0 April 30, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the code repository 1 of Stable Token Contracts of Solidus. The
Stable Token Contracts of the Solidus implements an ERC20-compliant stablecoin based on
the EIP-3009 and EIP-2612 standards. Additionally, the stablecoin incorporates security fea-
tures such as role-based access control. Note this audit only focuses on the smart contracts
in the following directories/files:

src/*
The auditing process is iterative. Specifically, we would audit the commits that fix the

discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for the
code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash

Stable Token Contracts
Version 1 b7ce5dcb052058b8b760ba263b383c993c1bc691
Version 2 79ca0e9115adce46ffa253ce2f13bbb310bdaf7a
Version 3 0c53348b47e442acf4cb3c1c86657a723af6f852

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying

1https://github.com/solidusfin/stablecoin-evm

https://github.com/solidusfin/stablecoin-evm

compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver

2

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 2 and CommonWeak-
ness Enumeration 3. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following five cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Partially Fixed The item has been confirmed and partially fixed by the client.
- Fixed The item has been confirmed and fixed by the client.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we found three potential security issues. Besides, we have four recommendations
and three notes.

- Medium Risk: 1
- Low Risk: 2
- Recommendation: 4
- Note: 3

ID Severity Description Category Status

1 Medium Potential DoS when the variable required
equals to the number of owners DeFi Security Fixed

2 Low Potential DoS due to the unbounded array
transactions

DeFi Security Fixed

3 Low Improper handling of the variable
transaction.executed

DeFi Security Fixed

4 - Lack of zero address checks Recommendation Fixed

5 - Add blacklist restrictions to approval op-
erations Recommendation Fixed

6 -

Add state change checks in
the blacklist(), unBlacklist(),
removeMinter(), and configureMinter()
functions

Recommendation Confirmed

7 - Unify signature handling across the pro-
tocol for consistency Recommendation Fixed

8 - Potential centralization risks Note -
9 - Potential front-running risks Note -

10 - Correct value assignments for the vari-
able required

Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Potential DoS when the variable required equals to the number of owners

Severity Medium
Status Fixed in Version 3

Introduced by Version 2

Description In the contract MultiSigWallet, the owners can submit transactions and the pend-
ing transaction cannot be executed until the number of confirmed owners equals to the variable
required. According to the design, the variable required can be equal to owners.length, which
means all the owners need to confirm the transaction before execution. In this case, a mali-
cious or compromised owner can deny to confirm any pending transactions, leading to a DoS
issue.

135 function removeOwner(address owner) public onlyWallet {
136 if (!isOwner[owner]) {
137 revert NoExistOwner(owner);
138 }
139
140 isOwner[owner] = false;
141 for (uint256 i = 0; i < owners.length - 1; i++) {
142 if (owners[i] == owner) {
143 owners[i] = owners[owners.length - 1];
144 break;
145 }
146 }
147 owners.pop();
148 if (required > owners.length) changeRequirement(owners.length);
149 emit OwnerRemoval(owner);
150 }

Listing 2.1: src/MultiSigWallet.sol

Impact The contract MultiSigWallet can suffer a DoS issue.
Suggestion Add a proper check on the variables required.
Note The projectmitigates the issue by ensuring that the variable required is less than owners.-
length. However, the risk still exists when multiple owners are malicious or compromised. It
is crucial for the project to implement a rigorous selection process for all owners to mitigate
these risks.

2.1.2 Potential DoS due to the unbounded array transactions

Severity Low
Status Fixed in Version 3

Introduced by Version 2

Description In the contract MultiSigWallet, the array transactions records submitted trans-
actions via the function _addTransaction()without any cleanupmechanism. This design intro-
duces a potential DoS risk to the functions getTransactionCount() and getTransactionIds(),
as they iterate over the entire transactions array.
370 function _addTransaction(
371 address destination,
372 uint256 value,
373 bytes calldata data
374) internal returns (uint256 transactionId) {
375 transactionId = transactions.length;
376 transactions.push(Transaction(destination, value, data, false));
377 emit Submission(transactionId, destination, value, data);
378 }

Listing 2.2: src/MultiSigWallet.sol

5

292 function getTransactionCount(
293 bool pending,
294 bool executed
295) public view returns (uint256 count) {
296 for (uint256 i = 0; i < transactions.length; i++)
297 if (
298 (pending && !transactions[i].executed) ||
299 (executed && transactions[i].executed)
300) count += 1;
301 }

Listing 2.3: src/MultiSigWallet.sol

340 function getTransactionIds(
341 uint256 from,
342 uint256 to,
343 bool pending,
344 bool executed
345) public view returns (uint256[] memory _transactionIds) {
346 uint256[] memory transactionIdsTemp = new uint256[](
347 transactions.length
348);
349 uint256 count = 0;
350 for (uint256 i = 0; i < transactions.length; i++)
351 if (
352 (pending && !transactions[i].executed) ||
353 (executed && transactions[i].executed)
354) {
355 transactionIdsTemp[count] = i;
356 count += 1;
357 }
358 _transactionIds = new uint256[](to - from);
359 for (uint256 i = from; i < to; i++)
360 _transactionIds[i - from] = transactionIdsTemp[i];
361 }

Listing 2.4: src/MultiSigWallet.sol

Impact Potential DoS due to the unbounded array transactions.
Suggestion Revise the code accordingly.

2.1.3 Improper handling of the variable transaction.executed

Severity Low
Status Fixed in Version 3

Introduced by Version 2

Description In the contract MultiSigWallet, the function executeTransaction() executes trans-
actions and records their execution status (i.e., transaction.executed) in the array transactions.
However, if a transaction fails, the execution status remains false, whichmeans the transaction
can be executed multiple times.

6

240 function executeTransaction(uint256 transactionId) public {
241 if (transactions[transactionId].executed) {
242 revert ExecutedTransaction(transactionId);
243 }
244
245 if (isConfirmed(transactionId)) {
246 Transaction storage transaction = transactions[transactionId];
247 transaction.executed = true;
248 (bool success,) = transaction.destination.call{
249 value: transaction.value
250 }(transaction.data);
251 if (success) {
252 emit Execution(transactionId);
253 } else {
254 emit ExecutionFailure(transactionId);
255 transaction.executed = false;
256 }
257 }
258 }

Listing 2.5: src/MultiSigWallet.sol

Impact The improper handling of the variable transaction.executed allows the transaction
to be executed multiple times, which is not an expected behavior.
Suggestion Revise the code accordingly.

2.2 Recommendation

2.2.1 Lack of zero address checks

Status Fixed in Version 3

Introduced by Version 1 & 2

Description In the contract StableTokenV1 and MultiSigWallet, inputs of several functions
(i.e., initialize(), configureMinter(), and submitTransaction()) are not checked to ensure
they are not zero. It is recommended to add such checks to prevent potential mis-operations.
51 function initialize(
52 string calldata name,
53 string calldata symbol,
54 address defaultAdmin,
55 address upgrader,
56 address pauser,
57 address rescuer,
58 address blacklister,
59 address mainMinter
60) public initializer {
61 __UUPSUpgradeable_init();
62 __Pausable_init();
63 __ERC20_init(name, symbol);
64 __ERC20Permit_init(name);

7

65 __AccessControlDefaultAdminRules_init(3 days, defaultAdmin);
66
67 _grantRole(UPGRADER_ROLE, upgrader);
68 _grantRole(PAUSER_ROLE, pauser);
69 _grantRole(RESCUER_ROLE, rescuer);
70 _grantRole(BLACKLISTER_ROLE, blacklister);
71 _grantRole(MAIN_MINTER_ROLE, mainMinter);
72
73 _setRoleAdmin(MINTER_ROLE, MAIN_MINTER_ROLE);
74 }

Listing 2.6: src/StableTokenV1.sol

166 function configureMinter(
167 address minter,
168 uint256 minterAllowedAmount
169) public override whenNotPaused returns (bool) {
170 return super.configureMinter(minter, minterAllowedAmount);
171 }

Listing 2.7: src/StableTokenV1.sol

193 function submitTransaction(
194 address destination,
195 uint256 value,
196 bytes calldata data
197) public returns (uint256 transactionId) {
198 transactionId = _addTransaction(destination, value, data);
199 confirmTransaction(transactionId);
200 }

Listing 2.8: src/MultiSigWallet.sol

Suggestion Add non-zero address checks accordingly.
Note The project removed certain role assignments (i.e., upgrader, pauser, rescuer, and blacklister)
from the function initialize() and will assign these roles as needed.

2.2.2 Add blacklist restrictions to approval operations

Status Fixed in Version 2

Introduced by Version 1

Description In the contract StableTokenV1, blacklisted users are restricted from performing
transfer operations but are still allowed to approve their assets. It is recommended to add
restrictions on blacklisted users for performing approval operations.
203 function _approve(
204 address owner,
205 address spender,
206 uint256 value,
207 bool emitEvent
208) internal override whenNotPaused {

8

209 super._approve(owner, spender, value, emitEvent);
210 }

Listing 2.9: src/StableTokenV1.sol

Suggestion Restrict blacklisted users from performing approval operations.

2.2.3 Add state change checks in the blacklist(), unBlacklist(), removeMinter(),
and configureMinter() functions

Status Confirmed
Introduced by Version 1

Description In the protocol, the MAIN_MINTER_ROLE and BLACKLISTER_ROLE roles can manage
users’ permissions through the functions blacklist(), unBlacklist(), configureMinter(), and
removeMinter(). It is recommended to implement state change checks on accounts’ current
statuses to ensure that they are different from the newly updated ones.
61 function blacklist(address account) public onlyRole(BLACKLISTER_ROLE) {
62 _isBlacklisted[account] = true;
63 emit Blacklisted(account);
64 }
65
66 /**
67 * @notice Removes account from blacklist.
68 * @param account The address to remove from the blacklist.
69 * @dev Only callable by accounts with BLACKLISTER_ROLE.
70 */
71 function unBlacklist(address account) public onlyRole(BLACKLISTER_ROLE) {
72 _isBlacklisted[account] = false;
73 emit UnBlacklisted(account);
74 }

Listing 2.10: src/libraries/Blacklistable.sol

51 function configureMinter(
52 address minter,
53 uint256 minterAllowedAmount
54) public virtual onlyRole(MAIN_MINTER_ROLE) returns (bool) {
55 _grantRole(MINTER_ROLE, minter);
56 _minterAllowed[minter] = minterAllowedAmount;
57 emit MinterConfigured(minter, minterAllowedAmount);
58 return true;
59 }
60
61 /**
62 * @notice Removes a minter from the system
63 * @dev Can only be called by an account with MAIN_MINTER_ROLE
64 * @param minter Address of the minter to remove
65 * @return bool True if the operation was successful
66 */
67 function removeMinter(
68 address minter

9

69) public virtual onlyRole(MAIN_MINTER_ROLE) returns (bool) {
70 _revokeRole(MINTER_ROLE, minter);
71 _minterAllowed[minter] = 0;
72 emit MinterRemoved(minter);
73 return true;
74 }

Listing 2.11: src/libraries/MintManager.sol

Suggestion Add state change checks on accounts’ current status in the functions blacklist(),
unBlacklist(), configureMinter(), and removeMinter().
Feedback from the project The project will not add the restrict in the functions blacklist()
and unBlacklist() for a clear code like USDT and USDC. For the function configureMinter(),
it is used to reconfigure the allowance.

2.2.4 Unify signature handling across the protocol for consistency

Status Fixed in Version 2

Introduced by Version 1

Description In the protocol, the function permit() supports both 65-byte and 64-byte (i.e.,
the compact signature) signatures. However, in the functions transferWithAuthorization(),
receiveWithAuthorization() and cancelAuthorization() of the contract EIP3009, only 65-
byte signatures are supported. It is recommended to unify signature handling across the pro-
tocol for consistency.
247 function permit(
248 address owner,
249 address spender,
250 uint256 value,
251 uint256 deadline,
252 bytes calldata signature
253) public {
254 (bytes32 r, bytes32 s, uint8 v) = signature.decodeRSV();
255
256 permit(owner, spender, value, deadline, v, r, s);
257 }

Listing 2.12: src/StableTokenV1.sol

27 function decodeRSV(
28 bytes calldata signature
29) internal pure returns (bytes32 r, bytes32 s, uint8 v) {
30 if (signature.length == 65) {
31 // Standard signature format
32 (r, s) = abi.decode(signature, (bytes32, bytes32));
33 v = uint8(signature[64]);
34 } else if (signature.length == 64) {
35 // EIP-2098 compact signature format
36 bytes32 vs;
37 (r, vs) = abi.decode(signature, (bytes32, bytes32));

10

38 s = vs & UPPER_BIT_MASK;
39 v = uint8(uint256(vs >> 255)) + 27;
40 } else {
41 revert InvalidSignatureLength();
42 }
43 }

Listing 2.13: src/libraries/Utils.sol

309 function _requireValidSignature(
310 address signer,
311 bytes32 dataHash,
312 bytes memory signature
313) private view {
314 if (
315 !SignatureChecker.isValidSignatureNow(
316 signer,
317 MessageHashUtils.toTypedDataHash(
318 _domainSeparatorV4(),
319 dataHash
320),
321 signature
322)
323) revert InvalidSignature();
324 }

Listing 2.14: src/libraries/EIP3009.sol

Suggestion Unify signature handling across the protocol for consistency.

2.3 Note

2.3.1 Potential centralization risks

Introduced by Version 1

Description Several protocol roles (e.g., the roles DEFAULT_ADMIN_ROLE, MAIN_MINTER_ROLE,
and UPGRADER_ROLE) could conduct privileged operations, which introduces potential central-
ization risks. If the private keys of the privileged accounts are lost or maliciously exploited, it
could pose a significant risk to the protocol.
Feedback from the project The project mitigated centralization risks by introducing the con-
tract MultiSigWallet to hold critical roles such as DEFAULT_ADMIN_ROLE, MAIN_MINTER_ROLE and
UPGRADER_ROLE.

2.3.2 Potential front-running risks

Introduced by Version 1

Description The protocol implements a stable token contract by integrating the EIP-3009 and
EIP-2612 standards, which enables approving and transferring assets via signatures. However,

11

these standards expose a front-running risk. Specifically, attackers can front-run the invo-
cations of some functions (i.e., transferWithAuthorization(), receiveWithAuthorization(),
and permit()). As a result, if the other protocols do not properly catch and handle errors, the
transactions will revert. This may influence the other normal users in the scenarios like batch
transfer. The protocol should notify other protocols, who integrate the stable token contract,
about the potential front-running risks.

2.3.3 Correct value assignments for the variable required

Introduced by Version 2

Description In the contract MultiSigWallet, the variable required is used as a requirement
for transaction executions. Specifically, the variable required can be set and modified via the
functions constructor() and changeRequirement(), respectively. The project should assign a
proper value to the variable required to ensure security.

12

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Potential DoS when the variable required equals to the number of owners
	2.1.2 Potential DoS due to the unbounded array transactions
	2.1.3 Improper handling of the variable transaction.executed

	2.2 Recommendation
	2.2.1 Lack of zero address checks
	2.2.2 Add blacklist restrictions to approval operations
	2.2.3 Add state change checks in the blacklist(), unBlacklist(), removeMinter(), and configureMinter() functions
	2.2.4 Unify signature handling across the protocol for consistency

	2.3 Note
	2.3.1 Potential centralization risks
	2.3.2 Potential front-running risks
	2.3.3 Correct value assignments for the variable required

		2025-04-30T13:46:55+0800

